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Abstract We discuss a nonparametric estimation method for the mixing distributions in
mixture models. The problem is formalized as a minimization of a one-parameter objective
functional, which becomes the maximum likelihood estimation or the kernel vector quanti-
zation in special cases. Generalizing the theorem for the nonparametric maximum likelihood
estimation, we prove the existence and discreteness of the optimal mixing distribution and
provide an algorithm to calculate it. It is demonstrated that with an appropriate choice of
the parameter, the proposed method is less prone to overfitting than the maximum likelihood
method. We further discuss the connection between the unifying estimation framework and
the rate-distortion problem.

Keywords Mixture models · Nonparametric estimation · Entropic risk measure ·
Rate-distortion theory

1 Introduction

When we utilize a statistical model p(x |θ) in order to analyze i.i.d. samples from an unknown
distribution, a commonly used approach is to compute a single point θ̂ from the parameter
space. Another natural approach is to make an inference as a distribution of θ , which is
natural in Bayesian statistics or ensemble learning. In this paper, we focus on the following
mixture distribution:
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r(x; q) =
∫

p(x |θ)q(θ)dθ

and discuss estimating the mixing distribution q(θ) nonparametrically, where q(θ) is arbi-
trary, including continuous distributions. It was proved by Lindsay (1983) that when samples
{x1, . . . , xn} are provided, the maximum likelihood estimator of the mixing distribution is a
discrete distribution and the number of its support points, in other words the probability mass
points, is no more than the sample size. This provides a guideline for determining the number
of mixture components from data. The mixture estimation algorithm developed in Nowozin
and Bakir (2008) can be utilized for estimating such discrete distributions. However, it is
vulnerable to overfitting because of the high flexibility of the nonparametric estimation.

In this paper, we define an objective functional with a single parameter β, called entropic
risk measure (Rudloff et al. 2008) and propose a nonparametric mixture estimation method as
a minimization problem of it. With specific choices of β, the method reduces to the maximum
likelihood estimation (MLE) (Lindsay 1983, 1995) and the kernel vector quantization (KVQ)
(Tipping and Schölkopf 2001). We generalize Lindsay’s theorem for the proposed method
and prove the discreteness of the optimal mixing distribution for general β. Then, we provide
an algorithm which is an extension of the procedure in Nowozin and Bakir (2008) to calculate
the optimal mixing distribution for the entropic risk measure. Numerical experiments indicate
that an appropriate choice of β will reduce the generalization error. We discuss the estimation
bias and variance to show that the range of optimal β depends on the sample size. We also
discuss the relation between the proposed mixture estimation method and the rate-distortion
problem (Berger 1971).

The paper is organized as follows. Section 2 introduces the entropic risk measure as the
objective functional for estimating the mixture model. Section 3 proves the discreteness of the
optimal mixing distribution with an overview of Lindsay’s proof, and a concrete estimation
algorithm for the mixing distribution is shown. Section 4 examines its properties through
numerical experiments for the Gaussian mixture model. In Sect. 5, we consider the range of
β that will improve the generalization ability and describe the relation to the rate-distortion
theory. Section 6 discusses the extension to other objective functionals than the entropic risk
measure, and Sect. 7 concludes this paper.

2 Mixture model and objective functional

We consider a problem of estimating an unknown underlying distribution p∗(x) behind n
training samples, {x1, . . . , xn}, xi ∈ Rd . As is common for density estimation and clustering,
we use the following mixture density of the model p(x |θ) with parameter θ ∈ � and the
mixing distribution q(θ):

r(x) = r(x; q) =
∫

p(x |θ)q(θ)dθ (1)

where q(θ) ≥ 0 for ∀θ ∈ � and
∫

q(θ)dθ = 1. For further discussion, we assume p(x |θ) is
bounded for ∀x ∈ Rd and ∀θ ∈ �.

If q(θ) is a single point distribution, computing q(θ) is a point estimation; and if q(θ) is a
parametric distribution, the inference of q(θ) is known as the empirical Bayesian approach.
Instead, we consider the problem nonparametrically.

Let us start by showing two approaches which are closely related to our framework. One is
the Maximum Likelihood Estimation (MLE) (Lindsay 1983, 1995); the problem is denoted
as follows:
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q̂(θ) = argmin
q

[
− 1

n

n∑
i=1

log ri

]

where ri = r(xi ; q) = ∫
p(xi |θ)q(θ)dθ . The other is the Kernel Vector Quantization (KVQ)

(Tipping and Schölkopf 2001),1

q̂(θ) = argmin
q

max
i

[− log ri
]
.

In this paper, we extend these ideas and consider the following optimization problem:

q̂(θ) = argmin
q

Fβ(q),

where

Fβ(q) =
{

1
β

log
(

1
n

∑n
i=1 r−β

i

)
for β �= 0, β ≥ −1

− 1
n

∑n
i=1 log ri for β = 0.

(2)

This objective functional corresponds to the entropic risk measure (of log r(x)) in the lit-
erature of mathematical finance (Rudloff et al. 2008).2 Note that Fβ(q) is continuous with
respect to β ∈ R, and convex for β ≥ −1. We will discuss the convexity of it in Sect. 3.1.
The above optimization problem becomes the MLE for β = 0 and the KVQ for β → ∞.
We will discuss other choices of the convex objective functional in Sect. 6.

In the rest of this section, we investigate the properties of Fβ . Let p∗(x) be the true
distribution that is generating the data {x1, . . . , xn}. The law of large numbers ensures that
Fβ converges to

1

β
log

∫
p∗(x)r(x)−βdx

as n → ∞. Let us recall the definition of the Renyi divergence (Renyi 1961),

Dα(p1, p2) = 1

α − 1
log

∫
p1(x)α p2(x)1−αdx ≥ 0, Dα(p, p) = 0 (α > 0).

From the non-negativity of the Renyi divergence, the following is shown easily by setting
p1 = p̃∗, p2 = r and α = β + 1:

1

β
log

∫
p∗(x)r(x)−βdx ≥ 1

β
log

∫
p∗(x) p̃∗(x)−βdx (3)

where

p̃∗(x) = p∗(x)
1

1+β

∫
p∗(x)

1
1+β dx

. (4)

The inequality in Eq. (3) implies that the estimated mixture distribution r̂(x) approaches
p̃∗(x), which is equivalent to the escort distribution of p∗. The escort distribution is a distri-
bution derived from the properties of the nonextensive form of entropy proposed by Tsallis

1 The original KVQ assumes the kernel function which is connected to the probability model as p(x |θ) ∝
K (x, θ), and the possible support points of q(θ) are fixed to the sample set {x1, . . . , xn}. That is q̂(θ) =∑n

i=1 qi δ(θ − xi ), qi ≥ 0,
∑n

i=1 qi = 1, where δ(·) is Dirac’s delta function.
2 The entropic risk measure was originally defined only for β > 0.
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(2009). To put it another way, the optimal mixture distribution r(x) satisfies the following
relation:

p∗(x) = r(x)1+β∫
r(x)1+βdx

.

The differential entropy, H̃ = − ∫
p̃∗(x) log p̃∗(x)dx , of the escort distribution defined

in Eq. (4) increases as β increases since d H̃
dβ

≥ 0 for β ≥ −1, and the escort distribution
converges to the uniform distribution as β → ∞.

3 Optimal mixing distribution

3.1 Discreteness of the optimal mixing distribution

In this section, we generalize Lindsay’s theorem (Lindsay 1983, 1995) to prove that the
optimal mixing distribution q(θ) which minimizes Fβ in Eq. (2) is discrete. Furthermore,
this enables us to rely on the decoupled approach in Nowozin and Bakir (2008). We will see
this in Sect. 3.2.

First, we show the convexity of Fβ with respect to r = (r1, . . . , rn) for β ≥ −1. We denote
Fβ as a function of r by Fβ(r). The function Fβ(r) is convex if the following inequality
holds for any two points, r0 = (r01, . . . , r0n) and r1 = (r11, . . . , r1n), and for 0 ≤ η ≤ 1:

Fβ(r0 + η(r1 − r0)) ≤ (1 − η)Fβ(r0) + ηFβ(r1).

This is equivalent to d2

dη2 Fβ(r0 +η(r1 − r0)) ≥ 0, 0 ≤ η ≤ 1 since Fβ is twice differentiable.
Note here that the convexity of Fβ with respect to r is equivalent to the convexity with respect
to q because Fβ depends linearly on q through ri = r(xi ; q). Let ri (η) = (1 − η)r0i + ηr1i ,
and we have

d2

dη2 Fβ(r0 + η(r1 − r0)) =
⎡
⎢⎣(β + 1)

n∑
i=1

ri (η)−β−2(r1i − r0i )
2

n∑
l=1

rl(η)−β

− β

{
n∑

i=1

ri (η)−β−1(r0i − r1i )

}2
⎤
⎦ 1(∑n

j=1 r j (η)−β
)2

=
⎡
⎣(β + 1)

⎧⎨
⎩
(

n∑
i=1

a2
i

)(
n∑

i=1

b2
i

)
−
(

n∑
i=1

ai bi

)2
⎫⎬
⎭

+
(

n∑
i=1

ai bi

)2
⎤
⎦ 1(∑n

j=1 r j (η)−β
)2 ≥ 0

where ai = ri (η)−
β
2 −1(r1i −r0i ), bi = ri (η)−

β
2 and the fact β ≥ −1 and the Cauchy-Schwarz

inequality are used. This shows that Fβ(r) is convex.
Next, we show the directional derivative of Fβ(r). The directional derivative from r0 to

r1 is defined as follows:

F ′
β,r0

(r1) = lim
η→0

Fβ(r0 + η(r1 − r0)) − Fβ(r0)

η
= 1 −

∑n
i=1 r−β−1

0i r1i∑n
j=1 r−β

0 j

. (5)
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Note that Eq. (5) is valid for β = 0 as well.
If r∗ minimizes Fβ(r), F ′

β,r∗(r1) ≥ 0 must hold for any r1. It has been proved for β = 0
that there exists a unique r that minimizes Fβ at the boundary of the convex hull of the
set { pθ = (p(x1|θ), . . . , p(xn |θ))|θ ∈ �}, where � is the parameter space (Lindsay 1983,
1995). This result can be generalized for the case β ≥ −1 because of the convexity of
Fβ . From Caratheodory’s theorem, this means that the optimal r is expressed by a convex
combination,

∑k
l=1 πl pθl

, with πl ≥ 0,
∑k

l=1 πl = 1 and k ≤ n, indicating that the optimal

mixing distribution is q(θ) = ∑k
l=1 πlδ(θ − θl), θl ∈ �, which is a discrete distribution

where the number of the support points is no more than n.

3.2 Optimization of mixing distribution

In this section, we derive an estimation algorithm for q(θ) following Nowozin and Bakir
(2008). This algorithm iterates the subproblem that augments a new point to the support of
q(θ) and the learning of the finite mixture model. The minimization of Fβ over finite mixture
models is implemented with a simple updating rule by the expectation-maximization (EM)
algorithm (Dempster et al. 1977; Barber 2012).

3.2.1 Learning procedure

If r∗ minimizes Fβ(r), F ′
β,r∗( pθ ) ≥ 0 for any pθ . Furthermore, F ′

β,r∗( pθ ) = 0 holds for

θ = θl where {θl}k
l=1 is the set of support points of the optimal mixing distribution. This

follows from the fact that if F ′
β,r∗( pθl

) > 0 holds for some θl , there must exist a θl ′ such that

F ′
β,r∗( pθl′ ) < 0,3 and Fβ(r) can be decreased by adding more weight πl ′ on θl ′ . Thus, the

optimal condition for the mixing distribution q(θ) is summarized as{
μ(θ) = 1 (θ = θl , l = 1, 2, . . . , k)

μ(θ) ≤ 1 (otherwise)

where

μ(θ) =
n∑

i=1

αi p(xi |θ), (6)

αi = r−β−1
i∑n
j=1 r−β

j

, (7)

and ri = ∫
p(xi |θ)q(θ)dθ . This yields Algorithm 1 for the optimization of the mixing distri-

bution q(θ), which sequentially augments points θ , satisfying μ(θ) > 1 until the maximum
of μ(θ) approaches 1 (Nowozin and Bakir 2008). In each iteration, the maximum of μ(θ)

is calculated (Step 3). If the maximum is larger than 1, one point is added to the set of sup-
port points. Then locations and weights of the support points are optimized (Step 4), that is,
parameters of a finite mixture model are estimated. We derive an EM-like algorithm for this
step in Sect. 3.2.2. In the case of the KVQ (β → ∞), this step was originally formulated and
solved by linear programming (Tipping and Schölkopf 2001; Nowozin and Bakir 2008).

The above algorithm updates {θl} as well as {πl} in Step 4. This is an extension of Nowozin
and Bakir (2008), where only {πl} is updated in the algorithm. Algorithm 1 requires a con-
stant ε and strongly depends on it especially when only {πl} is updated. In the numerical

3 This is proved simply from the fact that F ′
β,r∗ (r∗) = ∑k

l=1 πl F ′
β,r∗ ( pθl

) = 0.
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Algorithm 1 Decoupled Approach to Mixture Estimation

1: Initialize k = 0 and αi = 1/n and prepare a small positive constant ε.
2: repeat
3: Let

θk = argmax
θ

μ(θ)

and k = k + 1, where μ(θ) is given by Eq. (6).
4: Define the discrete distribution

qk (θ) =
k∑

l=1

πlδ(θ − θl ).

Optimize {πl , θl }k
l=1 by minimizing Fβ(qk ).

5: Compute {αi }n
i=1 by Eq. (7) with ri = ∑k

l=1 πl p(xi |θl ).
6: until maxθ μ(θ) < 1 + ε holds.

experiments in the next section, we set ε = 0.01. From the assertion in Sect. 3.1, this learn-
ing procedure is guaranteed to stop before the support size of q(θ) exceeds n if the learning
procedure is started with an empty support set and updating both {θl} and {πl}.

3.2.2 EM updates for finite mixtures

In this subsection, we discuss the learning algorithm of a finite mixture model that is required
in Step 4 of Algorithm 1. We separate the learning algorithm for the cases −1 ≤ β < 0 and
β ≥ 0, and derive the algorithm for each case. Let us start with −1 ≤ β < 0. First we define
the following function Fβ(θ ,π ,w) for β �= 0:4

Fβ(θ ,π ,w) = −
n∑

i=1

wi log r(xi ; q) − 1

β

n∑
i=1

wi log wi − 1

β
log n (8)

where w ∈ 
 = {w = (w1, w2, . . . , wn)|wi ≥ 0,
∑n

i=1 wi = 1}, θ = {θl}k
l=1 and π =

{πl}k
l=1. Note that Fβ(θ ,π ,w) is convex for w when −1 ≤ β < 0 and

min
w∈


Fβ(θ ,π ,w) = Fβ(r)

where the minimum is attained when

wi = r−β
i∑n

j=1 r−β
j

. (9)

Since Fβ(θ ,π ,w) is convex with respect to w, when −1 ≤ β < 0, we can derive a double
minimization algorithm as follows:

w
(t)
i = r (t)−β

i∑n
j=1 r (t)−β

j

, r (t)
i =

k∑
l=1

π
(t)
l p(xi |θ(t)

l ),

4 Fβ(θ , π , w) is related to the fact that the conjugate function of the log-sum-exp function is the entropy
function, −∑n

i=1 wi log wi (Boyd and Vandenberghe 2004).
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π
(t+1)
l =

n∑
i=1

w
(t)
i ν

(t)
il , (10)

θ
(t+1)
l = argmax

θ

n∑
i=1

w
(t)
i ν

(t)
il log p(xi |θ) (11)

where

ν
(t)
il = π

(t)
l p(xi |θ(t)

l )∑k
m=1 π

(t)
m p(xi |θ(t)

m )

is the posterior probability that the data point xi is assigned to the cluster center θl . In fact,
at the stationary point, either μ(θl) < 1 and πl = 0 or μ(θl) = 1 and πl > 0 hold. This is an
EM-like algorithm which can be seen from the fact that Eq. (8) is equivalent to a weighted
sum of negative log-likelihood.

When p(x |θ) is a member of the exponential family with the sufficient statistic T (x), that
is, p(x |θ) = h(x) exp{θT T (x) − G(θ)}, Eq. (11) is simplified to

θ
(t+1)
l = (∇G)−1

(
n∑

i=1

w
(t)
i ν

(t)
il T (xi )

)

where (∇G)−1 is the link function to the natural parameter space (Banerjee et al. 2005).
We can prove that the above update monotonically decreases the objective Fβ for β ≤ 0.5

Let us move to the case β > 0. When β > 0, Fβ(θ ,π ,w) is concave with respect to w

and the previous EM-like algorithm does not work.6 To directly minimize Fβ(q) with respect
to {θ ,π}, we switch to the following updating rules:

π
(t+1)
l ∝

{
n∑

i=1

(ν
(t)
il )1+β p(xi |θl)

−β

} 1
1+β

,

θ
(t+1)
l = θ

(t)
l + H(θ

(t)
l )−1

n∑
i=1

(ν
(t)
il )1+β p(xi |θ(t)

l )−β ∂ log p(xi |θ(t)
l )

∂θ

where

H(θ
(t)
l ) =

n∑
i=1

(ν
(t)
il )1+β p(xi |θ(t)

l )−β

⎧⎨
⎩ − ∂2 log p(xi |θ(t)

l )

∂θ∂θT

+ β

(
∂ log p(xi |θ(t)

l )

∂θ

)(
∂ log p(xi |θ(t)

l )

∂θ

)T
⎫⎬
⎭

is the Hessian matrix. These updates monotonically decrease Fβ(qk) for β > 0 and are
derived as the Newton-Raphson step (Boyd and Vandenberghe 2004, Sect. 9.5) to decrease
the right hand side of the inequality

5 The algorithm was defined for −1 ≤ β < 0, but it can be easily checked that the algorithm works for β = 0.
6 For β > 0, it holds that

max
w∈


Fβ(θ ,π , w) = Fβ(r),

and the maximum is attained by w satisfying Eq. (9).
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n∑
i=1

(
k∑

l=1

πl p(xi |θl)

)−β

≤
n∑

i=1

k∑
l=1

ν
1+β
il (πl p(xi |θl))

−β ,

which is Jensen’s inequality for the convex function x−β with β > 0.

3.3 Pre-imaging for generation of support points

We discuss the relationship between the proposed algorithm and kernel-based learning algo-
rithms. In this subsection, we focus on the case in which the component p(x |θ) is a location
family and is represented as p(x |θ) ∝ f (x − θ) for some function f , such as the Gaussian
density in Eq. (12).

As mentioned in Nowozin and Bakir (2008), the maximization of μ(θ) in Eq. (6) reduces
to the pre-image problem (Schölkopf et al. 1999) if the likelihood function p(x |θ) ∝ f (x−θ)

is, up to multiplication of a constant, given by the kernel function K (x, θ) associated with
a reproducing kernel Hilbert space. This is because, for the feature map φ(x) satisfying
f (x − θ) = K (x, θ) = φ(x)T φ(θ), the maximization of μ(θ) in Eq. (6) is equivalent to the
minimization of the norm (squared) in the Hilbert space

∥∥∥∥∥φ(θ) −
n∑

i=1

αiφ(xi )

∥∥∥∥∥
2

= K (θ, θ) − 2
n∑

i=1

αi K (xi , θ) +
∑
i, j

αiα j K (xi , x j )

when K (θ, θ) is constant. Note here that the coefficients {αi } depend on β as in Eq. (7). More
specifically, the coefficient αi is identified by wi in Eq. (9) and ri = ∫

K (xi , θ)q(θ)dθ from
Eq. (7) as

αi = wi

ri
.

The reciprocal dependence on ri means that maximizing Eq. (6) yields the new support point
around which the finite mixture constructed so far has low density. Further, if β �= 0, wi

weighs each sample point according to Eq. (9).

4 Numerical experiments

In this section, we investigate the properties of the estimation method by a numerical simu-
lation with 2-dimensional Gaussian mixtures where

p(x |θ) = γ

π
exp

(−γ ||x − θ ||2) . (12)

We generated synthetic data by the following distribution:

p∗(x) = 1

2
N (x |θ∗

1 , I2) + 1

2
N (x |θ∗

2 , I2) (13)

where θ∗
1 = (0, 0)T , θ∗

2 = (4, 4)T and N (x |θ, σ 2 I2) = 1
2πσ 2 exp

(
−||x−θ ||2

2σ 2

)
is the Gaussian

density function. Figure 1 shows p∗(x) and an example of a data set (n = 50).
We applied Algorithm 1 to the synthetic data drawn from p∗(x) in Eq. (13) and estimated

q(θ). We also applied the original version of the algorithm in Nowozin and Bakir (2008),
where each θl is not updated in Step 4 of Algorithm 1 but fixed once generated in Step 3, and
only {πl} are updated. Results for this case will be indicated as “means fixed.”
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-2  0  2  4  6 -2  0  2  4  6

0

p*(x)p*(x)

Fig. 1 The density function of p∗(x) (3D plot) and an example of a data set (crosses) (n = 50)

Let q̂(θ) be an estimated mixing distribution. We calculated the likelihood as the training
error

− 1

n

n∑
i=1

log r(xi ; q̂) = − 1

n

n∑
i=1

log
∫

p(xi |θ)q̂(θ)dθ, (14)

the prediction error for the test data {x̃i }ñ
i=1 drawn from the true distribution in Eq. (13)

− 1

ñ

ñ∑
i=1

log r(x̃i ; q̂) = − 1

ñ

ñ∑
i=1

log
∫

p(x̃i |θ)q̂(θ)dθ, (15)

and the maximum error for the training data {xi }n
i=1

max
1≤i≤n

[
− log

∫
p(xi |θ)q̂(θ)dθ

]
(16)

which corresponds to the objective functional of the KVQ. The number of training data is
n = 50 and that of test data is ñ = 200,000.

Furthermore, we investigated the number of estimated components. Since this number
strongly depends on ε, we also applied hard assignments to cluster centers for each data
point and counted the number of hard clusters. Here, each point xi is assigned to the cluster
center θ̂l that maximizes the posterior probability

p(θ̂l |xi ) = νil = π̂l p(xi |θ̂l)∑k̂
m=1 π̂m p(xi |θ̂m)

(17)

where we have assumed q̂(θ) = ∑k̂
l=1 π̂lδ(θ − θ̂l). The number of the hard clusters is usually

smaller than the number of the mixture components, that is, there are some components which
will never be selected by the hard assignment.

This posterior probability and the number of components will be used in connection with
rate-distortion function in Sect. 5.2. All results were averaged over 100 trials for different
data sets generated by (13).
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The estimated mixture for β = −0.2
and γ = 0.5.
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Fig. 2 a Example of the estimated mixture for β = −0.2 and γ = 0.5. The corresponding mixing distribution
is illustrated in the x–y plane where the location and the height of the solid lines are, respectively, the mean
parameter θ̂l and the weight π̂l of each component. b–d Training error, prediction error and maximum error
against β, respectively. The error bars show 95 % confidence intervals

4.1 Prediction with known Kernel width

First, we assumed that the kernel width γ in Eq. (12) was known and p(x |θ) was set to

p(x |θ) = 1
2π

exp
(
−||x−θ ||2

2

)
. The distribution p∗(x) is realized in this case by the mixing

distribution q(θ) = 1
2 δ(θ − θ∗

1 ) + 1
2 δ(θ − θ∗

2 ). An example of the estimated mixture model
for β = −0.2 and γ = 0.5 is demonstrated in Fig. 2a.

Figure 2b, c, respectively, show the training error (14) and the prediction error (15).
We see that the average training error is minimized at β = 0 as expected, while the

minimum of average prediction error is attained around β = −0.2. Figure 2d shows the
average of the maximum errors of Eq. (16). As expected, it monotonically decreases with
respect to β, which is consistent with the fact that the estimation approaches the KVQ as
β → ∞.

In Fig. 3, we show the average number of estimated components remaining after the
elimination of components with sufficiently small mixing proportions (less than 1

n2 ) and the
average number of hard clusters.

The number of components k̂ as well as the number of hard clusters increase as β becomes
larger. The discussion in Sect. 2 suggests that as β grows, more components are estimated to
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Fig. 3 Number of components (crosses) and number of hard clusters (asterisks) against β

increase the entropy of the mixture r(x; q). This regularization reduces the average prediction
error when β takes a slightly negative value as we have just observed in Fig. 2c. In Sect. 5.1,
we will discuss the effective range of β which reduces the generalization error.

4.2 Mismatched Kernel width

Next we assumed γ �= 0.5, that is, the variance of a component has a mismatch.
When γ < 0.5, the true distribution in Eq. (13) cannot be realized with the model in

Eq. (1). This will induce a larger objective Fβ and a larger training error by the order of
O(1). The top panels of Fig. 4a–c show examples of estimated mixtures and the average
prediction error as a function of β for γ = 0.05, γ = 0.2 and γ = 0.4, respectively. We see
that the prediction error is much larger for γ = 0.05 and γ = 0.2 than for γ = 0.4.

When γ ≥ 0.5, the distribution p∗(x) is realizable with the mixture distribution in Eq. (1)
using the mixing distribution, q(θ) = 1

2 N (θ |θ∗
1 , (1−1/(2γ ))I2)+ 1

2 N (θ |θ∗
2 , (1−1/(2γ ))I2).

The top panels of Fig. 4d–f show examples of estimated mixtures and the average prediction
error as a function of β for γ = 0.6, γ = 1.0 and γ = 2.0, respectively. For γ = 1.0 and
γ = 2.0, the minimum is achieved when β > 0. This is expected from the fact that infinitely
many components are required for r(x; q) to be identical to the true distribution.

The results in Fig. 4c (γ = 0.4) and Fig. 4d (γ = 0.6) are similar to those presented in
Sect. 4.1 because γ is close to the true value, 0.5. The prediction error increases when the
mismatch of γ is large. The above results imply that it is possible to use cross-validation to
select β and the kernel width γ . But a practical procedure needs to be explored further. The
next section is devoted to discussing the selection of these parameters.

5 Selection of parameters

This section first discusses the optimal parameter β that minimizes the average generalization
error. The relationship between the mixture estimation and the rate-distortion problem is then
described.
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 3.59

 3.6

 3.61

 3.62

 3.63

 3.64

 3.65

 3.66

 3.67

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

pr
ed

ic
tio

n 
er

ro
r

β

means fixed
means updated

-2  0  2  4  6 -2  0  2  4  6

0

r(x;q)r(x;q)

(d) γ = 0.6 (β̂ = −0.2)

 3.68

 3.7

 3.72

 3.74

 3.76

 3.78

 3.8

 3.82

 3.84

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

pr
ed

ic
tio

n 
er

ro
r

β

means fixed
means updated

-2  0  2  4  6 -2  0  2  4  6

0

r(x;q)r(x;q)

(e) γ = 1.0 (β̂ = 0.1)

 3.8

 3.85

 3.9

 3.95

 4

 4.05

 4.1

 4.15

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

pr
ed

ic
tio

n 
er

ro
r

β

means fixed
means updated

-2  0  2  4  6 -2  0  2  4  6

0

r(x;q)r(x;q)

(f) γ = 2.0 (β̂ = 0.5)

Fig. 4 Examples of estimated mixtures (top row) and prediction errors as a function of β (bottom row) for
a γ = 0.05 (β̂ = 0.3), b γ = 0.2 (β̂ = 0.4), c γ = 0.4 (β̂ = −0.2), d γ = 0.6 (β̂ = −0.2), e γ = 1.0
(β̂ = 0.1) and f γ = 2.0 (β̂ = 0.5). In each column, the estimated mixture and the mixing distribution are
displayed in the same way as in Fig. 2a, and the prediction error is displayed as in Fig. 2c. The value of β,
indicated in parentheses as β̂, was selected so as to minimize the average prediction error when the means are
updated

5.1 Effective range of β

Let r̂β(x) be the estimated mixture model for β. We discuss the β which minimizes the
average generalization error

E

[∫
p∗(x) log

p∗(x)

r̂β(x)
dx

]

where E denotes the expectation with respect to the distribution of the data sets,
∏n

i=1 p∗(xi ).
The optimal β is related to the number of data n. As described in Sect. 2, r̂β(x) approaches

the escort distribution p̃∗(x) ∝ p∗(x)
1

1+β . This brings a bias to the estimation. We use the
Kullback-Leibler divergence K L(p∗, p̃∗) = ∫

p∗(x) log p∗(x)
p̃∗(x)

dx as the indicator of the bias.
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Fig. 5 Generalization errors against β for different n when a γ = 0.5 and b γ = 2.0. Minimums are marked
with circles

It follows from the Taylor expansion of the divergence around β = 0 that

K L(p∗, p̃∗) = Varp∗ [log p∗(x)]
2

β2 + O(β3) (18)

where Varp∗ [log p∗(x)] = ∫
p∗(x)(log p∗(x))2dx − (∫

p∗(x) log p∗(x)
)2.

We focus on the Gaussian mixture used in Sect. 4 and consider the condition that
the influence of the bias does not exceed the reduction in variance of estimation. It is
conjectured that the log-likelihood ratio of the finite mixture models is in the order of
log log n when the model has redundant components (Hartigan 1985). This implies that∑n

i=1 log r̂0(xi )
p∗(xi )

= Op(log log n). We further assume symmetry between the training error,

E
[

1
n

∑n
i=1 log p∗(xi )

r̂0(xi )

]
, and the generalization error, E

[
K L(p∗, r̂0)

]
. The symmetry means

that the training and generalization errors converge to zero symmetrically from below and
above zero as n → ∞ (Amari et al. 1992; Watanabe 2005). Here, we assume the symmetry
holds in the slightly weaker sense that both errors have the same order with respect to n.
More specifically,

E
[
K L(p∗, r̂0)

] = O

(
log log n

n

)
. (19)

From Eq. (18) and the above result, the order of the optimal β that minimizes the gener-
alization error is

β̂ = O

(√
log log n

n

)

since otherwise the bias in Eq. (18) has a larger order than that of the variance around β = 0.
Figure 5a, b show the average generalization error, 1

ñ

∑ñ
i=1 log p∗(x̃i )

r(x̃i ;q̂)
against β for dif-

ferent sample sizes, n, when γ = 0.5 and γ = 2.0 respectively.7 As can be seen from the
results for β = 0 in both figures, the assumption in Eq. (19) is reasonable. We also see that the
generalization error is minimized by β with the smaller absolute value as n increases. This
tendency becomes more apparent for γ = 2.0, that is, when the variance is underestimated.

7 We did not show but a similar trend was observed for the case where {θl } are fixed (see Sect. 4).
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5.2 Connection to the rate-distortion problem

The convex clustering in Lashkari and Golland (2007) corresponds to a special case of our
proposal, that is, β = 0 (MLE), and the support points of q(θ) are fixed to the training data
set {x1, . . . , xn}. For this restricted version of the problem, it is pointed out that the kernel
width, γ in Eq. (12), has a relationship to the rate-distortion (RD) function of source p̂(x)

(the empirical distribution) and distortion associated with p(x |θ) (for example, the squared
distortion for Gaussian) (Lashkari and Golland 2007). In this section, we investigate the
relationship of our proposal with the RD theory in a general case where the support points of
q(θ) are not restricted to the sample points and β �= 0. The relationship of mixture modeling
with the RD theory is also partly discussed in Banerjee et al. (2005) for the finite mixture
of exponential family distributions under the constraint that the cardinality of the support of
q(θ) is fixed.

Let us start with a short summary of the RD theory. The source random variable X
with density p∗(x) is reproduced to � with the conditional distribution p(θ |x), where the
distribution is chosen to minimize the rate, i.e., the mutual information I (X;�) under the
constraint of the average distortion measure. This is formulated by the Lagrange multiplier
method as follows and is reformulated as the optimization problem in Eq. (21) (Berger 1971):

min
q(θ |x)

[I (X;�) − s E[d(X,�)]]

= min
q(θ |x)

[∫
p∗(x)q(θ |x) log

q(θ |x)∫
p∗(x)q(θ |x)dx exp(sd(x, θ))

dxdθ

]

= min
q(θ |x),q(θ)

[∫
p∗(x)q(θ |x) log

q(θ |x)

q(θ) exp(sd(x, θ))
dxdθ

]
(20)

= min
q(θ)

[
−
∫

p∗(x){log
∫

q(θ) exp(sd(x, θ))dθ}dx

]
(21)

where Eqs. (20) and (21) follow from the facts that the minimization on q(θ) and q(θ |x) are
respectively attained by

q(θ) =
∫

p∗(x)q(θ |x)dx

and

q(θ |x) = q(θ) exp(sd(x, θ))∫
q(θ) exp(sd(x, θ))dθ

.

Here d(x, θ) is the distortion measure and the negative real variable s is a Lagrange multiplier.
s provides the slope of a tangent to the RD curve and hence has one-to-one correspondence
with a point on the RD curve. The problem in Eq. (21) reduces to the MLE (Fβ(q) when
β = 0) with p(x |θ) ∝ exp(sd(x, θ)) if the source p∗(x) is replaced with the empirical
distribution. In the case of the Gaussian mixture with d(x, θ) = ||x − θ ||2, s specifies the
kernel width by γ = −s.

For a general β, the expression (8) and the optimal reconstruction distribution q̂(θ) =∑k̂
l=1 π̂lδ(θ − θ̂l) imply the RD function of the source,

∑n
i=1 wiδ(x − xi ), with the rate

R =
n∑

i=1

k̂∑
l=1

wiνil log
νil∑n

j=1 w jν jl

and the average distortion
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Fig. 6 Examples of RD curves. a RD curve for the true Gaussian mixture in Eq. (13) (solid line) and its
Shannon lower bound (dotted line). b–d: RD curve for an empirical distribution (dashed line) and the average
of linearly interpolated RD curves over 100 empirical data sets with the upper and lower bands indicating 2
standard deviations (dotted lines) when b β = 0.0, c β = −0.2 and d β = 0.5. The rate is scaled by log 2 to
yield bits

D =
n∑

i=1

k̂∑
l=1

wiνil d(xi , θ̂l)

where νil is the posterior probability defined by Eq. (17). Since the rate is equivalent
to the mutual information between X and �, it is bounded from above by the entropy,

−∑k̂
l=1 π̂l log π̂l and further by log k̂.

Figure 6a shows the RD curve for p∗(x) given by the Gaussian mixture in Eq. (13)
and its Shannon lower bound (Berger 1971). To draw the RD curve, we used the following
facts: The optimal reconstruction distribution q(θ) is the Dirac delta distribution centered at

θ̄ = θ∗
1 +θ∗

2
2 = (2, 2)T for a distortion larger than Dmax = minθ

∫
p∗(x)||θ − x ||2dx = 10.

The optimal q(θ) is the Gaussian mixture 1
2 N

(
θ |θ∗

1 , (1 + 1
2s )I2

) + 1
2 N

(
θ |θ∗

2 , (1 + 1
2s )I2

)
for a distortion less than 1, the variance of the component. The RD curve is equal to the
Shannon lower bound for this range of the distortion. For a distortion between 1 and Dmax,
the optimal q(θ) is a two-component discrete distribution, 1

2 δ(θ − θ̄ −a1)+ 1
2 δ(θ − θ̄ +a1),

where 1 = (1, 1)T and a is a real number between 0 and 2, which we identified for each
s (s ≥ −0.5) by the optimality condition of the minimization problem in Eq. (21). These
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facts agree with the result of Rose (1994), which proves that for the squared distortion, if the
Shannon lower bound is not tight, then the optimal reconstruction distribution is discrete.

Figure 6b overwrites Fig. 6a (without the Shannon lower bound) with the RD curve for the
empirical distribution given by a data set (n = 50) generated by p∗(x). We used Algorithm
1 with β = 0 for estimating q(θ) for each s and interpolated linearly to draw the RD
curve. Figure 6c, d show RD curves for β = −0.2 and β = 0.5, respectively, drawn by using
Algorithm 1 for each s. Note here that, in the above interpretation of the proposed optimization
as an RD problem, the source depends on wi , which depends on q(θ) as in Eq. (9) whereas
in the original RD problem, the source does not depend on the reconstruction distribution.
Hence the above pair of rate and distortion does not necessarily inherit properties of the usual
RD function such as convexity, except for β = 0. In fact, the RD curve for β = 0.5 loses
convexity as in Fig. 6d.

Figure 6b–d also show the average and twice the standard deviation of the linearly inter-
polated RD curves for 100 empirical data sets. We can see that when compared to the MLE
(β = 0), the RD curves for β = −0.2 have small variation around the point (D, R) = (2, 1),
and those for β = 0.5 are, on average, close to the RD curve for the true Gaussian mixture
in the small distortion region, that is, for a small variance of the Gaussian component. These
imply the observation in Sects. 4.1 and 4.2 that β �= 0 can reduce the generalization error of
the MLE. For β > 0, the learning algorithm developed in Sect. 3 can be considered as an
algorithm for computing Renyi’s analog of the rate-distortion function previously appearing
in Arikan and Merhav (1998) in the context of guessing.

6 Further topics

By extending Lindsay’s theorem, we proved in Sect. 3.1 that the estimated q(θ) is a discrete
distribution consisting of distinct support points no greater in number than the number of
training data. If p(x |θ) is bounded for all x and θ , this statement can be generalized to
other objective functionals as long as they are convex with respect to q(θ) and hence to
r = (r1, . . . , rn). The proposed algorithm in Sect. 3.2 is based on the decoupled approach
developed in Nowozin and Bakir (2008). The general objective functional considered in
Nowozin and Bakir (2008) includes the MLE and the KVQ. More specifically, the following
four objective functionals are demonstrated as examples in Nowozin and Bakir (2008). Here,
ρ = mini ri and C is a constant.

1. MLE: −∑n
i=1 log ri

2. KVQ: −ρ

3. Margin-minus-variance: −ρ + C
n

∑n
i=1 (ri − ρ)2

4. Mean-minus-variance: − 1
n

∑n
i=1 ri + C

n

∑n
i=1

(
ri − 1

n

∑n
j=1 r j

)2

The objective functional Fβ in Eq. (2) combines the first two objectives by the parameter
β. The other two objectives above are convex with respect to r as well and hence can be
proven to have optimal discrete distributions q(θ) with no more than n support points. Note
that since r is a linear function of q(θ), the convexity on r is equivalent to that on q(θ).
Furthermore, we have developed in Sect. 3.2.2 a simple algorithm for finite mixture models
to minimize Fβ . In fact, this optimization algorithm for large β is used for approximate
computation of the prior distribution achieving the normalized maximum likelihood in the
context of universal coding (Barron et al. 2014). Note that, to apply the general framework

123



Mach Learn (2015) 99:119–136 135

of Sect. 3.2.1 to specific objective functionals, we need learning algorithms for optimizing
them for finite mixture models.

Another aspect of the choice of the objective functional is the robustness of the estima-
tion. In Sect. 2, we demonstrated that the minimization of Fβ is related to that of the Renyi
divergence. We further discuss its relationship to the divergence minimization that was pro-
posed for the purpose of robust estimation. The gamma divergence (Fujisawa and Eguchi
2008; Eguchi et al. 2011) is defined for non-negative densities g and h with a real parameter
γ ≥ −1 as

Dγ (g, h) = dγ (g, h) − dγ (g, g) (22)

where dγ is the gamma cross entropy

dγ (g, h) = − 1

γ
log

∫
g(x)h(x)γ dx{∫

h(x)1+γ dx
} γ

1+γ

.

The following relation holds:

Fβ(q) = (1 + γ )dγ ( p̂, r
1

1+γ )

where β = − γ
1+γ

and p̂(x) is the empirical distribution.
The beta divergence in Murata et al. (2004) and Eguchi and Kato (2010) is a generalization

of the Kullback-Leibler divergence, which consists of a cross entropy term as above dγ , and
is identical with the power divergence in Basu et al. (1998).

The expression (8) of Fβ can be viewed as a weighted version of the log-likelihood
function. When β < 0, Eq. (9) provides a downweighting for outlying observations. This
downweighting is equivalent to what is referred to in Basu et al. (1998) as a relative-to-the-
model downweighting. This implies that the robustness of the estimation, the main feature of
minimization of these divergences, carries over to Fβ minimization for β < 0. We observed
that this can alleviate overfitting in Sect. 4.1 where the generalization error is minimized with
a slightly negative value of β. It is an interesting direction to explore a class of robustness-
inducing objective functionals of q(θ).

7 Conclusion

In this article, a nonparametric estimation method of mixing distributions is discussed. We
have proposed an objective functional for the learning of mixing distributions of mixture
models which unifies the MLE and the KVQ with the parameter β. By extending Lindsay’s
result, we proved that the optimal mixing distribution is a discrete distribution with distinct
support points no greater in number than the sample size, and we provided a simple algo-
rithm to calculate it. It has been demonstrated through numerical experiments and analyzed
theoretically that the estimated distribution is less prone to overfitting for some range of β.
We have further discussed the nature of the objective functional in relation to the RD theory.
Finally, we have shown certain open problems. We believe these results open a new direction
for further research.
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