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Abstract: The explicit form of the rate-distortion function has rarely been obtained, except for few
cases where the Shannon lower bound coincides with the rate-distortion function for the entire
range of the positive rate. From an information geometrical point of view, the evaluation of the
rate-distortion function is achieved by a projection to the mixture family defined by the distortion
measure. In this paper, we consider the β-th power distortion measure, and prove that β-generalized
Gaussian distribution is the only source that can make the Shannon lower bound tight at the minimum
distortion level at zero rate. We demonstrate that the tightness of the Shannon lower bound for β = 1
(Laplacian source) and β = 2 (Gaussian source) yields upper bounds to the rate-distortion function of
power distortion measures with a different power. These bounds evaluate from above the projection of
the source distribution to the mixture family of the generalized Gaussian models. Applying similar
arguments to ε-insensitive distortion measures, we consider the tightness of the Shannon lower
bound and derive an upper bound to the distortion-rate function which is accurate at low rates.
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1. Introduction

The rate-distortion function, R(D), shows the minimum achievable rate to reproduce source
outputs with the expected distortion not exceeding D. The Shannon lower bound (SLB) has been used
for evaluating R(D) [1,2]. The tightness of the SLB for the entire range of the positive rate identifies
the entire R(D) for pairs of a source and distortion measure such as the Gaussian source with squared
distortion [1], the Laplacian source with absolute magnitude distortion [2], and the gamma source
with Itakura–Saito distortion [3]. However, such pairs are rare examples. In fact, for a fixed distortion
measure, there exists only a single source that makes the SLB tight for all D, as we will prove in
Section 2.3. The necessary and sufficient condition for the tightness of the SLB was first obtained for
the squared distortion [4], discussed for a general difference distortion measure d [2], and recently
described in terms of d-tilted information [5]. While these results consider the tightness of the SLB for
each point of R(D) (i.e., for each D), we discuss the tightness for all D in this paper. More specifically,
if we focus on the minimum distortion at zero rate (denoted by Dmax), the tightness of the SLB at Dmax

characterizes a condition between the source density and the distortion measure.
If the SLB is not tight, the explicit evaluation of the rate-distortion function has been obtained

only in limited cases [6–9]. Little is inferred on the behavior of R(D) when the distortion measure is
varied from a known case, since R(D) does not continuously change even if the distortion measure
is continuously modified. Although the SLB is easily obtained for difference distortion measures,
it is unknown how accurate the SLB is without the explicit evaluation, upper bound, or numerical
calculation of the rate-distortion function.
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In this paper, we consider the constrained optimization of the definition of R(D) from an
information geometrical viewpoint [10]. More specifically, we show that it is equivalent to a projection
of the source distribution to the mixture family defined by the distortion measure. If the source is
included in the mixture family, the SLB is tight; if it is not tight, the gap between R(D) and its SLB
evaluates the minimum Kullback–Leibler divergence from the source to the mixture family (Lemma 1).
Then, using the bounds of the rate-distortion function of the β-th power difference distortion measure
obtained in [11], we evaluate the projections of the source distribution to the mixture families associated
with this distortion measure (Theorem 3).

Operational rate-distortion results have been obtained for the uniform scalar quantization of the
generalized Gaussian source under the β-th power distortion measure [12,13]. We prove that only
the β-generalized Gaussian distribution has the potential to be the source whose SLB is tight; that is,
identical to the rate-distortion function for the entire rage of positive rate. This fact brings knowledge
on the tightness of the SLB of an ε-insensitive distortion measure, which is obtained by truncating the
loss function near zero error [14–16]. The above result implies that the SLB is not tight if the source is
the β-generalized Gaussian and the distortion has another power γ 6= β. We demonstrate that even
in such a case, a novel upper bound to R(D) can be derived from the condition for the tightness of
the SLB. The fact that the Laplacian (β = 1) and the Gaussian (β = 2) sources have the tight SLB
specifically derives a novel upper bound to R(D) of γ( 6= β)-th power distortion measure, which has a
constant gap from the SLB for all D. By the relationship between the SLB and the projection in the
information geometry, the gap evaluates the projections of the β-generalized Gaussian source to the
mixture families of γ-generalized Gaussian models. Extending the above argument to ε-insensitive
loss, we derive an upper bound to the distortion-rate function, which is tight in the limit of zero rate.

2. Rate-Distortion Function and Shannon Lower Bound

2.1. Rate-Distortion Function

Let X and Y be real-valued random variables of a source output and reconstruction, respectively.
For the distortion measure between x and y, d(x, y), the rate-distortion function R(D) of the source
X ∼ p(x) is defined by

R(D) = inf
q(y|x):E[d(X,Y)]≤D

I(q),

where

I(q) = I(X; Y)

=
∫ ∫

q(y|x)p(x) log
q(y|x)∫

q(y|x)p(x)dx
dxdy (1)

is the mutual information and E denotes the expectation with respect to q(y|x)p(x). R(D) shows the
minimum achievable rate R to reconstruct source outputs with average distortion not exceeding D
under the distortion measure d [2,17]. The distortion-rate function, D(R), is the inverse function of the
rate-distortion function.

If the conditional distribution qs(y|x) achieves the minimum of the following Lagrange function
parameterized by s ≥ 0,

L(q) = I(q) + s (E[d(X, Y)]−D) ,

then the rate-distortion function is parametrically given by

R(Ds) = I(qs),

Ds =
∫

qs(y|x)p(x)d(x, y)dxdy.
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The parameter s corresponds to the (negated) slope of the tangent of R(D) at (Ds, R(Ds)),
and hence is referred to as the slope parameter [2]. Alternatively, the rate-distortion function is
given by ([18], Theorem 4.5.1):

R(D) = sup
s≥0

min
q(y)

{
E
[
− log

∫
e−sd(X,y)q(y)dy

]
− sD

}
. (2)

If the marginal reconstruction density qs(y) achieves the minimum above, the optimal conditional
reconstruction distribution is given by

qs(y|x) =
e−sd(x,y)qs(y)∫
e−sd(x,y)qs(y)dy

, (3)

(see, for example, [2,19]).
From the properties of the rate-distortion function R(D), we know that R(D) > 0 for

0 < D < Dmax, where
Dmax = inf

y

∫
p(x)d(x, y)dx, (4)

and R(D) = 0 for D ≥ Dmax [2] (p. 90). Hence, Dmax = limR→0 D(R).

2.2. Shannon Lower Bound

In this paper, we focus on difference distortion measures,

d(x, y) = ρ(x− y), (5)

for which Shannon derived a general lower bound to the rate-distortion function [1] ([2], Chapter 4).
Throughout this paper, we assume that the function ρ is nonnegative and satisfies

Cs ≡
∫

e−sρ(z)dz < ∞, (6)

for all s > 0. It follows that

Cs =
∫

e−sρ(z)dz =
∫

e−sd(z,0)dz =
∫

e−sd(x,µ)dx =
∫

e−sρ(x−µ)dx,

for all µ ∈ R.
Let

K(p||r) =
∫

p(x) log
p(x)
r(x)

dx

denote the Kullback–Leibler divergence from p to r, which is non-negative and equal to zero if and
only if p(x) = r(x) almost everywhere. We define the distribution

gs(x) =
1
Cs

e−sρ(x). (7)

Then, the Shannon lower bound (SLB) is defined by

R(D) ≡ h(p)− h(gs), (8)

where h(p) is the differential entropy of the probability density p, and s is related to D by

D =
∫

ρ(x)gs(x)dx. (9)
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The next lemma shows that the SLB is in fact a lower bound to the rate-distortion function and
that the difference between them is lower bounded by the Kullback–Leibler divergence.

Lemma 1. For a source with probability density function p(x) and the difference distortion measure (5),

R(D)− R(D) ≥ min
q(y)

K(p||ms) ≥ 0, (10)

where s and D are related to each other by (9) and

ms(x) = (gs ∗ q)(x) =
∫

gs(x− y)q(y)dy

is the convolution between gs and q.

Proof. Let s be the slope parameter s satisfying (9) for D. From (2), we have

R(D) ≥ min
q(y)

{
E
[
− log

∫
e−sd(X,y)q(y)dy

]
− sD

}
,

= min
q(y)
{K(p||ms)− log Cs + h(p)− sD}

= min
q(y)

K(p||ms) + h(p)− h(gs)

= min
q(y)

K(p||ms) + R(D),

which completes the proof.

In the information geometry, for a family of distributions M and a given distribution p,
the distributions that achieve the minimums

min
r∈M

K(p||r) and min
r∈M

K(r||p)

are called the m-projection and e-projection of p toM, respectively [10]. As a family of distributions,
the (M− 1)-dimensional mixture family spanned by {p1(x), · · · , pM(x)} is defined by

M =

{
M

∑
i=1

qi pi(x)
∣∣∣ qi ≥ 0, i = 1, · · · , M,

M

∑
i=1

qi = 1

}
.

Hence, from the information geometrical viewpoint, the above lemma shows that the difference
between R(D) and R(D) evaluates the m-projection

min
r∈Ms

K(p||r)

of the source distribution p to

Ms =

{
ms(x) = (gs ∗ q)(x)

∣∣∣ q(y) ≥ 0 (∀y),
∫

q(y)dy = 1
}

,

the (infinite-dimensional) mixture family defined by {gs(x− y)|y ∈ R}.
It is also easy to see from the lemma that the SLB coincides with R(D) (that is, R(D) = R(D)

holds in (8)) if and only if the source random variable X with density p(x) can be represented as the
sum of two independent random variables, one of which is distributed according to the probability



Entropy 2017, 19, 262 5 of 13

density function gs(x) in (7). This condition is referred to as the “backward channel” condition, and is
equivalent to the fact that the integral equation

p(x) =
∫

gs(x− y)qs(y)dy (11)

has a solution qs(y) which is a valid density function ([2], Chapter 4). This condition is also equivalent
to the fact that p ∈Ms.

2.3. Probability Density Achieving Tight SLB for All D

The following theorem claims that for a difference distortion measure, there is at most a unique
source for which R(D) is tight at D = Dmax.

Theorem 1. Assume that the source distribution has a finite Dmax achieved by a reconstruction µ; that
is, E[d(X, µ)] = Dmax < ∞. The rate-distortion function is strictly greater than the SLB at D = Dmax,
R(Dmax) > R(Dmax), unless the following holds for the source density almost everywhere:

p(x) =
exp {−s∗d(x, µ)}

Cs∗
,

where Cs is defined in (6), and s∗ is determined by the relation

− ∂ log Cs

∂s

∣∣∣∣
s=s∗

= Dmax. (12)

Proof. Let Z be the random variable such that Z− µ has the density gs∗ . As a functional of the source
density p(x), the SLB at D = Dmax is expressed as

R(Dmax) = h(p)− h(gs∗)

= h(p)− log Cs∗ − s∗E[d(Z, µ)]

= −K(p(x)||gs∗(x− µ)) + s∗ {Dmax − E[d(Z, µ)]} . (13)

From the non-negativity of the divergence, R(Dmax) is maximized to 0 only if p(x) = gs∗(x− µ)

holds almost everywhere.

The tightness of the SLB for each D characterizes the form of the backward channel p(x|y) as
discussed for example in ([5], Theorem 4). The above theorem focuses on D = Dmax and characterizes
the relation between the form of the source density p(x) and the distortion measure.

The tightness of the SLB at D = Dmax is relevant to the tightness for all 0 < D ≤ Dmax. For some
distortion measures (e.g., the squared and absolute distortion measures), the random variable Zs ∼ gs

is decomposable into the sum of two independent random variables

Zs = Zs′ + N,

where Zs′ ∼ gs′ and some random variable N for any s′ > s. The backward channel condition (11)
means that in such a case, the tightness of the SLB at D = Dmax implies the tightness of the SLB for all
0 < D < Dmax. The condition (11) is closely related to the closure property with respect to convolution.
If gs(x− y) is a kernel function associated with a reproducing kernel Hilbert space, such a closure
property is studied in detail [20].
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3. Generalized Gaussian Source and Power Distortion Measure

3.1. β-th Power Distortion Measure

We examine the rate-distortion trade-offs under the β-th power distortion measure

dβ(x, y) = |x− y|β, (14)

where β > 0 is a real exponent. In particular, β = 2 corresponds to the squared error criterion and
β = 1 to the absolute one. The corresponding noise model given by (7) is

gs(x) =
1
Cs

e−s|x|β ,

where Cs = 2
β

1
s1/β Γ

(
1
β

)
and Γ is the gamma function. This model is the β-th-order generalized

Gaussian distribution including the Gaussian (β = 2) and the Laplace (β = 1) distributions as special
cases. Its differential entropy is

h(gs) = log Cs +
1
β

. (15)

For a difference distortion measure, we can assume that the µ in Theorem 1 is zero without loss of
generality. Thus, as a source, we assume the generalized Gaussian random variable with the density,

p(x) = pβ(x) =
1

C α
β

exp
(
−α

β
|x|β

)
, (16)

where 0 < α < +∞, which is a versatile model for symmetric unimodal probability densities. Here the
scaling factor α/β is chosen so that

Dmax = Ep[|X|β] =
1
α
> 0

holds.
The SLB for the source (16) with respect to the distortion measure (14) is

R(D) =

{
− 1

β log αD, (0 < D ≤ 1
α ),

0, (D > 1
α ),

which follows from (8), (15), and the relation between the slope parameter s and the average distortion
Ds given by (9),

Ds = Egs [|Z|β] =
Γ(1+ 1/β)

sΓ(1/β)
=

1
sβ

.

It is well known that when β = 2 (Gaussian source and the squared distortion measure), the SLB
is tight; that is, R(D) = R(D) for all D [1,2,17]. The optimal reconstruction distribution minimizing (2)
for this case is given by

q1/(2D)(y) =
1√

2π(1/α−D)
exp

{
− y2

2(1/α−D)

}
,

for 0 < D < 1/α. Additionally, when β = 1 (Laplacian source and the absolute distortion measure),
the SLB is tight for all D ([2], Example 4.3.2.1), which is attained by

q1/D(y) = α2D2δ(y) + (1− α2D2)
α

2
e−α|y|,

for 0 < D < 1/α, where δ is Dirac’s delta function.
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3.2. Tightness of the SLB

From Theorem 1, we immediately obtain the following corollary, which shows that the
β-generalized Gaussian source is the only source that can make the SLB tight at D = Dmax under the
β-th power distortion measure (14).

Corollary 1. Assume that the source distribution has mean 0 and a finite β-th moment, Ep[|X|β] = 1/α < ∞.
Under the β-th power distortion measure (14), the rate-distortion function is strictly greater than the
SLB at D = Dmax, R(Dmax) > R(Dmax), unless the source distribution is the β-generalized Gaussian
with the density (16).

In the case of β = 1, the rate-distortion function of the ε-insensitive distortion measure,

d(x, y) = max{0, |x− y| − ε}, (17)

was studied [16]. It was proved that a necessary condition for R(Ds) = R(Ds) at a slope parameter s is
that R(Ds) = R(Ds) also holds for ε = 0. According to Theorem 1, this fact derives a contradiction if
there is a source that makes the SLB of the distortion measure (17) tight at D = Dmax. Thus, we have
the following corollary.

Corollary 2. Under the ε-insensitive distortion measure (17) with ε > 0, no source makes the SLB tight at
D = Dmax.

4. Rate-Distortion Bounds for Mismatching Pairs

From Corollary 1, the SLB cannot be tight for all D if the distortion measure dγ has a different
exponent γ from that of the source pβ (i.e., γ 6= β). In this section, we show that even in such a case,
accurate upper and lower bounds to R(D) of Laplacian and Gaussian sources can be derived from the
fact that R(D) = R(D) for β = 1 and β = 2.

We denote the rate-distortion function and bounds to it by indicating the parameters β and γ of
the source and the distortion measure. More specifically, R[γ]

β (D) denotes the rate-distortion function
for the source pβ with respect to the distortion measure dγ.

We first prove the following lemma:

Lemma 2. If R[β]
β (D) = R[β]

β (D) for all D, then

Eq1/(βD)pβ
[dγ(X, Y)] =

Γ (γ/β + 1/β)

Γ (1/β)
(βD)γ/β,

holds for γ > 0, where Eq1/(βD)pβ
denotes the expectation with respect to q1/(βD)(y|x)pβ(x), and

D = Eq1/(βD)pβ

[
dβ(X, Y)

]
is satisfied for the optimal conditional reproduction distribution qs in (3).

Proof. R[β]
β (D) = R[β]

β (D) implies that

qs(y|x)pβ(x) = gs(x− y)qs(y)
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for the optimal reproduction distribution qs(y|x) in (3) and qs(y) minimizing (2), and D = 1/(βs).
It follows that

Eq1/(βD)pβ
[dγ(X, Y)] =

∫
|x− y|γq1/(βD)(y|x)pβ(x)dydx

= Eg1/(βD)
[|Z|γ] = Γ (γ/β + 1/β)

Γ (1/β)
(βD)γ/β

Let D[γ] ≡ Γ(γ/β+1/β)
Γ(1/β)

(βD)γ/β, which is equivalent to

D =
1
β

{
Γ (1/β)

Γ (γ/β + 1/β)
D[γ]

} β
γ

. (18)

The above lemma implies that q1/(βD)(y|x) achieving R[β]
β (D) has the expected dγ-distortion,

D[γ] = E[dγ(X, Y)]

with the rate R = R[β]
β (D) = − 1

β log(αD) if R[β]
β (D) = R[β]

β (D) for all D.

Thus, we obtain the following upper bound to R[γ]
β (D) if R[β]

β (D) = R[β]
β (D).

R[γ]
β (D) ≡ − 1

β
log

α

β

{
Γ (1/β)

Γ (γ/β + 1/β)
D[γ]

} β
γ


= − 1

γ
log

[(
α

β

) γ
β Γ(1/β)

Γ(γ/β + 1/β)
D

]
(19)

We also have the SLB for R[γ]
β ,

R[γ]
β (D) ≡ h(pβ)− h(g[γ]1/γD)

= − 1
γ

log

[(
α

β

) γ
β Γ(1/γ)γ

Γ(1/β)γ

βγe1−γ/β

γγ−1 D

]
(20)

Therefore, we arrive at the following theorem:

Theorem 2. If R[β]
β (D) = R[β]

β (D), for 0 < D ≤ Dmax, the rate-distortion function R[γ]
β (D) is lower- and

upper-bounded as

R[γ]
β (D) ≤ R[γ]

β (D) ≤ R[γ]
β (D),

where the lower and upper bounds are given by (20) and (19). The left inequality becomes equality only for
γ = β. The gap between the bounds is

δ
[γ]
β ≡ R[γ]

β (D)− R[γ]
β (D)

= − 1
γ

log

[
γγ−1

βγ

Γ(1/β)γ+1

Γ(1/γ)γ

eγ/β−1

Γ(γ/β + 1/β)

]
, (21)

which is constant with respect to D. Furthermore, the upper bound is tight at D = Dmax = (β/α)γ/βΓ(γ/β +

1/β)/Γ(1/β); that is,

R[γ]
β (Dmax) = R[γ]

β (Dmax) = 0.
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Since the upper bound is tight at D = Dmax, it is the smallest upper bound that has a constant
deviation from the SLB. In addition, the SLB is asymptotically tight in the limit D→ 0 for the distortion
measure dγ in general [2,21], and the condition for the asymptotic tightness has been weakened

recently [22]. These facts suggest that the rate-distortion function R[γ]
β (D) is near the SLB at low

distortion levels and then approaches the upper bound R[γ]
β (D) as the average distortion D grows to

Dmax. In terms of the distortion-rate function, the theorem also implies that the encoder q1/(βD)(y|x)
designed for dβ-distortion has the loss in dγ-distortion, due to the mismatch of the orders, at most by

the constant factor eγδ
[γ]
β .

From Lemma 1 in Section 2.2, by examining the correspondence between the slope parameter
0 < s < ∞ and the distortion level D, we obtain the next theorem, which evaluates the m-projection of
the source to the mixture family,

M[γ]
s ≡

{
m[γ]

s (x) = (g[γ]s ∗ q)(x)
∣∣∣ q(y) ≥ 0 (∀y),

∫
q(y)dy = 1

}
.

If the upper bound R[γ]
β is replaced by the asymptotically tight upper bound [2,21], asymptotically

tighter bounds to the m-projection are obtained.

Theorem 3. If R[β]
β (D) = R[β]

β (D), for 0 < D ≤ Dmax, the m-projection of the generalized Gaussian source

pβ to the mixture familyM[γ]
s of g[γ]s (x) ∝ e−s|x|γ is evaluated as

min
r∈M[γ]

s

K(pβ||r) ≤ δ
[γ]
β ,

for s ≥ s∗ related to 0 ≤ D ≤ Dmax by (9), where δ
[γ]
β is given by (21). For 0 < s ≤ s∗, the m-projection is

upper bounded as
min

r∈M[γ]
s

K(pβ||r) ≤ K(pβ||g
[γ]
s ). (22)

Furthermore, the inequality (22) holds with equality for 0 < s ≤ smin, where smin = limh→−0 R[γ]
β (Dmax +

h)/h is the slope parameter of R[γ]
β (D) at D = Dmax.

Proof. The first part of the theorem is a corollary of Theorem 2 and Lemma 1. The second part
corresponds to the case of D ≥ Dmax, since D monotonically decreases as s grows. Because q(y) = δ(y)
yields m[γ]

s = g[γ]s , we have (22). It follows from (13) that K(pβ||g
[γ]
s∗ ) = δ

[γ]
β .

Since for 0 ≤ s ≤ smin, the optimal reconstruction distribution is given by qs(y) = δ(y), (22) holds
with equality.

Since we know that if β = 1 and β = 2, the SLB is tight for all D, we have the following corollaries.

Corollary 3. The rate-distortion function of the Laplacian source, R[γ]
1 (D), is lower- and upper-bounded as

− 1
γ

log
[

αγΓ(1/γ)γ

(eγ)γ−1 D
]
≤ R[γ]

1 (D) ≤ − 1
γ

log
[

αγ

Γ(γ + 1)
D
]

.

Corollary 4. The rate-distortion function of the Gaussian source, R[γ]
2 (D), is lower- and upper-bounded as

− 1
γ

log

[(
2α

π

)γ/2 Γ(1/γ)γ

γγ−1eγ/2−1 D

]
≤ R[γ]

2 (D) ≤ − 1
γ

log
[(α

2

)γ/2
√

π

Γ(γ/2+ 1/2)
D
]

.
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Example 1. If we put γ = 1 in Corollary 4 (β = 2), we have

− log

(√
2eα

π
D

)
≤ R[1]

2 (D) ≤ − log
(√

πα

2
D
)

. (23)

The explicit evaluation of R[1]
2 (D) is obtained through a parametric form using the slope parameter s [6].

While the explicit parametric form requires evaluations of the cumulative distribution function of the Gaussian
distribution, the bounds in (23) demonstrate that it is well approximated by an elementary function of D. In fact,
the gap between the upper and lower bounds is δ

[1]
2 = − log π

2
√

e = 0.070 (bit). The bounds in (23) are compared

with R[1]
2 (D) for α =

√
2 in Figure 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3  0.4  0.5  0.6  0.7  0.8

R
 (

b
it
s
)

D

R(D)
Upper bound
Lower bound

Figure 1. Rate-distortion function R[1]
2 (D) [6] and its lower and upper bounds in (23).

Example 2. If we put γ = 2 in Corollary 3 (β = 1), we have

−1
2

log
(

α2π

2e
D
)
≤ R[2]

1 (D) ≤ −1
2

log
(

α2

2
D
)

for the Laplacian source and the squared distortion measure d2(x, y) = |x− y|2. The gap between the bounds is
δ
[2]
1 = − 1

2 log e
π = 0.104 (bit).

The upper bound in Theorem 2 implies the following:

Corollary 5. Under the γ-th power distortion measure, if R[γ]
γ (D) = R[γ]

γ (D) for all D, the γ-generalized
Gaussian source has the greatest rate-distortion function among all β-generalized Gaussian sources with a fixed
E[|X|γ], satisfying R[β]

β (D) = R[β]
β (D) for all D.

Proof. Since Epβ
[|X|γ] = Dmax = (β/α)γ/βΓ(γ/β + 1/β)/Γ(1/β), the upper bound in (19) is

expressed as −(1/γ) log (D/Dmax), which is equal to the rate-distortion function of the γ-generalized
Gaussian source under the γ-th power distortion measure if its SLB is tight for all D.

The preceding corollary is well-known in the case of the squared distortion measure, while the
Gaussian source has the largest rate-distortion function not only among all β-generalized Gaussian
sources, but also among all the sources with a fixed variance ([2], Theorem 4.3.3).
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5. Distortion-Rate Bounds for ε-Insensitive Loss

As another example of a distortion measure that is not matching with the β-generalized Gaussian
source in the sense of Theorem 1, we consider the following γ-th power ε-insensitive distortion
measure generalizing (17),

d(x, y) = ρε(x− y)γ, (24)

where ρε(z) = max{|z| − ε, 0}. Such distortion measures are used in support vector regression
models [14,15].

In this section, we focus on the Laplacian source (β = 1), for which similarly to Section 4,
we can evaluate

Egs [ρε(Z)γ] = DγΓ(γ + 1) exp
(
− ε

D

)
,

where gs(z) = s
2 e−s|z| and s = 1/D. Such an explicit evaluation appears to be prohibitive for

β 6= 1. The above expected distortion is achievable by q1/D(y|x) with the rate R = − log(αD) since

R[1]
1 (D) = R[1]

1 (D) holds for all D. Thus, we obtain the following upper bound, which is expressed by
a closed form in the case of the distortion-rate function.

Theorem 4. The distortion-rate function D[ε,γ]
1 (R) of the Laplacian source under the γ-th power ε-insensitive

distortion measure (24) is upper-bounded as

D[ε,γ]
1 (R) ≤ D[ε,γ]

1 (R) ≡ Γ(γ + 1)
αγ

exp
(
−γR− αεeR

)
. (25)

In addition, the upper bound is tight at R = 0; that is,

D[ε,γ]
1 (0) = D[ε,γ]

1 (0) = Ep1 [ρε(X)γ] =
Γ(γ + 1)

αγ
e−αε.

Upper and (Shannon) lower bounds which are accurate asymptotically as D → 0 have been
obtained for the distortion measure (24) [16]. They are proved to have approximation error at most
O(ε2) as D → 0. Combined with these bounds, the upper bound (25), being accurate at high distortion
levels, provides a good approximation of the rate-distortion function for the entire range of D. This is
demonstrated in Figure 2 for the case of ε = 0.1, γ = 1, and α =

√
2, where the upper bound (25) and

that in [16] are referred to as low-rate and high-rate upper bounds because they are effective at low
and high rates, respectively. Although the rate-distortion function of this case is still unknown, it lies
between the upper bounds and the SLB. Hence, the figure implies that the SLB is accurate for all R,
and the rate-distortion function is almost identified except for the region around R = 3 (bits) where
there is a relatively large gap between the upper bounds and the SLB.

 0.0001

 0.001

 0.01

 0.1

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

D

R (bits)

Low-rate upper bound
High-rate upper bound
Shannon lower bound

Figure 2. Distortion-rate bounds for the Laplacian source with α =
√

2 under the ε-insensitive
distortion measure (24) (ε = 0.1, γ = 1). The upper bound (25) (solid), the asymptotic upper bound
obtained in [16] (dashed), and the Shannon lower bound (SLB, dotted).
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6. Conclusions

We have shown that the generalized Gaussian distribution is the only source that can make the
SLB tight for all D under the power distortion measure if the orders of the source and the distortion
measure are matched. We have also derived an upper bound of the rate-distortion function for the
cases when the orders are mismatched, which together with the SLB provides constant-width bounds
sandwiching the rate-distortion function, and hence evaluates the m-projection of the source to the
mixture family associated with the distortion measure. The derived bounds demonstrate the possibility
that the condition for the tightness of the SLB implies knowledge on the behavior of the rate-distortion
function of other distortion measures; for example, those defined by composition of functions. In fact,
we have obtained an upper bound to the distortion-rate function of ε-insensitive distortion measures in
the case of the Laplacian source. It is an important undertaking to investigate the geometric structure
of the mixture family associated with the distortion measure and its relationship to the m-projection;
that is, the optimal reconstruction distribution.
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