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Abstract: Kernel methods have been used for turning linear learning algorithms into nonlinear
ones. These nonlinear algorithms measure distances between data points by the distance in the
kernel-induced feature space. In lossy data compression, the optimal tradeoff between the number of
quantized points and the incurred distortion is characterized by the rate-distortion function. However,
the rate-distortion functions associated with distortion measures involving kernel feature mapping
have yet to be analyzed. We consider two reconstruction schemes, reconstruction in input space and
reconstruction in feature space, and provide bounds to the rate-distortion functions for these schemes.
Comparison of the derived bounds to the quantizer performance obtained by the kernel K-means
method suggests that the rate-distortion bounds for input space and feature space reconstructions are
informative at low and high distortion levels, respectively.
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1. Introduction

Kernel methods have been widely used for nonlinear learning problems combined with
linear learning algorithms such as the support vector machine and the principal component
analysis [1]. By the so-called kernel trick, kernel-based methods can use linear learning methods in the
kernel-induced feature space without explicitly computing the high-dimensional feature mapping.
Kernel-based methods measure the dissimilarity between data points by the distance in the feature
space, which, in input space, corresponds to a distance measure involving the feature mapping [2].
If a kernel-based learning method is used as a lossy source coding scheme, its optimal rate-distortion
tradeoff is indicated by the rate-distortion function associated with the distortion measure defined
by the kernel feature map [3]. Successful applications of kernel methods in learning problems and
flexibility to create various distance measures suggest that kernel-based distortion measures can
be suitable for certain lossy compression problems. However, the rate-distortion function of such
a distortion measure has yet to be evaluated analytically. Although there are several kernel-based
approaches to vector quantization [4,5], their rate-distortion tradeoffs are still unknown.

In this paper, we derive bounds for the rate-distortion functions for kernel-based distortion
measures. We consider two schemes to reconstruct inputs in lossy coding methods. One is to obtain a
reconstruction in the original input space. Since kernel methods usually yield results of learning by the
linear combination of vectors in feature space, we need an additional step to obtain the reconstruction
in input space, such as preimaging [6]. The other is to consider the linear combination of feature vectors
as the reconstruction and measure the distortion in the feature space directly. We formulate the two
reconstruction schemes (Sections 3.1 and 3.2), and prove that the rate-distortion function of input space
reconstruction provides an upper bound of that of feature space reconstruction (Section 3.3). We derive
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lower and upper bounds to the rate-distortion function of input space reconstruction, which are
computable only by one-dimensional numerical integrations in the case of translation invariant and
isotropic kernel functions (Sections 4.1 and 4.2). We also provide an upper bound to the rate-distortion
function of feature space reconstruction for general positive definite kernel functions (Section 4.4).
In the usual applications of kernel-based quantization algorithms, one fixes the rate by determining the
number of quantized points, and minimizes the average distortion for training data. The distortion-rate
function, which is the inverse function of the rate-distortion function, shows the minimum achievable
expected distortion (or distortion for test data) at the fixed rate. The derived bounds approximately
characterize such optimal tradeoffs between the rate and expected distortion.

Furthermore, we design a vector quantizer using the kernel K-means method and compare its
performance with the derived rate-distortion bounds (Section 5). We also compute the preimages
of the quantized points in feature space to investigate the performance of the quantizer in input
space. It is suggested through the experiments using synthetic and image data that the rate-distortion
bounds of reconstruction in input space are accurate at low distortion levels while the upper bound
for reconstruction in feature space is informative at high distortion levels.

2. Rate-Distortion Function

Let X and Y be random variables of input and reconstruction taking values in X and Y ,
respectively. For the non-negative distortion measure between x and y, d(x, y), the rate-distortion
function R(D) of the source X ∼ p(x) is defined by

R(D) = inf
q(y|x):E[d(X,Y)]≤D

I(q), (1)

where I(q) = I(X; Y) is the mutual information and E denotes the expectation with respect to
q(y|x)p(x). R(D) shows the minimum achievable rate R under the given distortion measure d [3,7].
The distortion-rate function is the inverse function of the rate-distortion function and denoted by D(R).

If the conditional distributions qs(y|x) achieve the minimum of the following Lagrange functional
parameterized by s ≥ 0,

L(q) = I(q) + s (E[d(X, Y)]− D) ,

then, the rate-distortion function is parametrically given by

R(Ds) = I(qs),

Ds =
∫

qs(y|x)p(x)d(x, y)dxdy.

The parameter s corresponds to the (negated) slope of the tangent of R(D) at (Ds, R(Ds)) and
hence is referred to as the slope parameter [3]. Alternatively, if there exists a marginal reconstruction
density qs(y) that minimizes the functional,

F(q) = −1
s

E
[

log
∫

e−sd(X,y)q(y)dy
]

,

then the optimal conditional reconstruction distributions are given by

qs(y|x) =
e−sd(x,y)qs(y)∫
e−sd(x,y)qs(y)dy

(2)

(see, for example, [3,8]).
From the properties of the rate-distortion function R(D), we know that R(D) > 0 for 0 < D <

Dmax, where
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Dmax = inf
y

∫
p(x)d(x, y)dx, (3)

and R(D) = 0 for D ≥ Dmax [3] (p. 90). Hence, Dmax = limR→0 D(R).

3. Kernel-Based Distortion Measures

In kernel-based learning methods, data points in input space X are mapped into some
high-dimensional feature space H by a feature mapping φ. Then, the similarity between the two
points x and y in X is measured by the inner product 〈φ(x), φ(y)〉 in H.

The inner product is directly evaluated by a nonlinear function in input space

K(x, y) = 〈φ(x), φ(y)〉 , (4)

which is called the kernel function. Mercer’s theorem ensures that there exists some φ such that
Equation (4) holds if K is a positive definite kernel [1]. This enables us to avoid explicitly computing
the feature map φ in the potentially high-dimensional space H, which is called the kernel trick. A lot
of learning methods that can be expressed by only the inner products between data points have
been kernelized [1].

We identify the feature space H with the reproducing kernel Hilbert space (RKHS) associated with
the kernel function K by the canonical feature map, φ(x) = K(·, x) [9] (Lemma 4.19). We assume that
the input space X is a subset of Rm, and the kernel function K is continuous [9] (Lemma 4.29). We focus
on the squared norm in feature space as the distortion measure, and consider two reconstruction
schemes in the following respective subsections.

3.1. Reconstruction in Input Space

If we restrict ourselves to the reconstruction in input space, that is, the reconstruction y ∈ X ⊂ Rm

is computed for each input x ∈ X , the distortion measure is naturally defined by

dinp(x, y) = ||φ(x)− φ(y)||2

= K(x, x) + K(y, y)− 2K(x, y).
(5)

Note that the reconstruction φ(y) of φ(x) is restricted to the subset of the feature space,
{φ(y); y ∈ X}. To obtain a reconstruction in input space, we need a technique such as preimaging [6].

This is a difference distortion measure if and only if the kernel function is translation invariant,
that is, K(x + a, y + a) = K(x, y) for any a ∈ X . In this case, the distortion measure is expressed as

dinp(x, y) = ρ(x− y), (6)

where ρ(z) = 2(C− K(z, 0)) and C = K(0, 0). The rate-distortion function (distortion-rate function,
resp.) for this distortion measure is denoted by Rinp(D) (Dinp(R), resp.) and the maximum distortion
Dmax in Equation (3) is denoted by Dmax,inp, that is,

Dmax,inp = E[K(X, X)] + inf
y
{K(y, y)− 2E[K(X, y)]} , (7)

which is in the translation invariant case, Dmax,inp = 2
(

C− supy E[K(X, y)]
)

.

3.2. Reconstruction in Feature Space

Suppose we have a sample of length n in input space, S = {x1, ..., xn} so that {φ(x1), ..., φ(xn)}
spans a linear subspace in feature space. If we compute the reconstruction by the linear combination
∑n

i=1 αiφ(xi) for αi ∈ R, i = 1, ..., n, and consider it as the reconstruction in feature space, the distortion
can be measured by
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dfea(x, α) = d[S]fea(x, α) =

∥∥∥∥∥φ(x)−
n

∑
i=1

αiφ(xi)

∥∥∥∥∥
2

= K(x, x)− 2αTk(x) + αTKα,

(8)

where α = (α1, ..., αn)T ∈ Rn,

k(x) = (K(x1, x), ..., K(xn, x))T ,

and K = (K(xi, xj))ij is the Gram matrix. Note that the reconstruction is identified with the coefficients
α whose domain is not identical to the input space X . Although the distortion measure dfea depends
on the sample S, we omit the dependence in the notation since we consider a fixed design of S for a
sufficiently large n. The sample does not have to be distributed according to the source distribution,
while it is required to overspread the support of the source.

The rate-distortion function (distortion-rate function, resp.) for this distortion measure is denoted
by Rfea(D) (Dfea(R), resp.) and the maximum distortion Dmax in Equation (3) is given by

Dmax,fea = E[K(X, X)]− E[k(X)]TK−1E[k(X)], (9)

which is derived from the direct minimization of the quadratic function of α,
∫

dfea(x, α)p(x)dx.

3.3. Rinp(D) and Rfea(D)

The following theorem claims that Rinp(D) provides an upper bound of Rfea(D) when n is
sufficiently large.

Theorem 1. If the input space X is bounded, and there exists a conditional density achieving the infimum in
the definition of Rinp(D), for any ε > 0, D ≥ ε, and sufficiently large n, the following inequality holds:

Rfea(D + ε) ≤ Rinp(D).

The proof is given in Appendix A. This theorem shows that the feature space reconstruction gives
better rates since a single feature vector φ(y) can be approximated by a linear combination ∑n

i=1 αiφ(xi)

when n is sufficiently large.

4. Rate-Distortion Bounds

Since the rate-distortion problem (Section 2) is rarely solved in a closed form [8], we derive bounds
to Rinp(D) and Rfea(D).

4.1. Lower Bound to Rinp(D)

Although the Shannon lower bound to R(D) is defined for difference distortion measures in
general [3] (p. 92), it diverges to −∞ for the distortion measure in Equation (6) since

∫
e−sρ(z)dz

diverges to ∞. Hence, we consider an improved lower bound, which was introduced by [3] (p. 140).
Let QB be the probability that ‖X‖ ≤ B. Then, R(D) is lower-bounded as

R(D) ≥ QB

{
h(pB)− max

g∈GB,D
h(g)

}
, (10)

where h denotes the differential entropy,

pB(x) =
1

QB
p(x)u(B− ‖x‖), (11)

and u is the step function. GB,D is the set of all probability densities g(·) for which g(x) = 0 for
‖x‖ > B and

∫
ρ(z)g(z)dz ≤ D/QB.
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In the case of the distortion measure in Equation (6), the maximum in Equation (10) is explicitly
given by

gs(z) =
1

CB,s
exp (2sK(z, 0)) u(B− ‖z‖), (12)

where CB,s =
∫
‖z‖≤B e2sK(z,0)dz for s related to D by

∫
ρ(z)gs(z)dz = D/QB. Since its differential

entropy is

h(gs) = −s
∂ log CB,s

∂s
+ log CB,s, (13)

we arrive at the following theorem.

Theorem 2. The rate distortion function Rinp(D) is parametrically lower-bounded as

Rinp(Ds) ≥ Rinp,L(Ds) = QB

{
h(pB) + s

∂ log CB,s

∂s
− log CB,s

}
,

Ds = QB

{
2C− ∂ log CB,s

∂s

}
. (14)

If we further assume that the kernel function is radial, that is, K(x, y) = K(x− y, 0) = k(‖x− y‖)
for some function k, the integrations above reduce to one-dimensional ones,

CB,s = A(m)
∫ B

0
rm−1e2sk(r)dr,

and

∂ log CB,s

∂s
= 2

∫
‖z‖≤B

K(z, 0)e2sK(z,0)dz

= 2A(m)
∫ B

0
rm−1k(r)e2sk(r)dr,

(15)

where A(m) = m
√

π
m

Γ(m/2+1) is the area of the m-dimensional unit sphere, and Γ is the gamma function.

4.2. Upper Bound to Rinp(D)

If dinp in Equation (5) is a difference distortion measure, that is, K is translation invariant, by
choosing q(y|x) = gs(y− x) for the density gs in Equation (12), the following upper bound is obtained,

Rinp(Ds) ≤ Rinp,U(Ds) = h(gs ∗ p)− h(gs) (16)

Ds = 2C− ∂ log CB,s

∂s
, (17)

where h(gs) is given by Equation (13) and (gs ∗ p)(y) =
∫

gs(y− x)p(x)dx is the convolution between
gs and p. This type of upper bound was used to prove the asymptotic tightness of the Shannon lower
bound (as D → 0) for a class of general sources and distortion measures [3,10–12]. However, this
upper bound requires the evaluation of the differential entropy of the convolution.

The following theorem is derived from the facts that the spherical Gaussian distribution maximizes
the entropy under the constraint that E[‖X‖2] is no greater than a constant, and that E[‖Y‖2] =

E[‖X‖2] + E[‖Z‖2] holds for Y = X + Z ∼ gs ∗ p.

Theorem 3. If the kernel function is translation invariant and radial, K(x, y) = k(‖x− y‖), then Rinp(D) is
parametrically upper-bounded as
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Rinp(Ds) ≤ Rinp,G(Ds) =
m
2

log(2πe(vp + vs))− h(gs),

where
vp = 1

m
∫
‖x− µ‖2 p(x)dx,

µ =
∫

xp(x)dx,
vs = 1

m
∫
‖x‖2gs(x)dx

= A(m)
mCB,s

∫ B
0 rm+1e2sk(r)dr,

(18)

and Ds is given by Equation (17) (and Equation (15)).

4.3. Rate-Distortion Dimension

In this section, we evaluate the rate-distortion dimension [13] of the kernel-based distortion
measure in Equation (5) to investigate its property. We focus on the radial kernel, K(x, y) = k(‖x− y‖),
also in this section, and assume that

lim
r→0

k(r)− k(0)
rα

= −β (19)

holds for some α > 0 and β > 0. For example, the Gaussian kernel, k(r) = exp
(
−γr2) (γ > 0),

satisfies Equation (19) for α = 2 and β = γ.
To examine the limit D → 0 of Rinp(D), we consider the asymptotic case of s → ∞. Since

k(r) = k(0)− βrα + o(rα), it follows that

CB,s = A(m)
∫ B

0
e2sk(r)rm−1

dr

= A(m)e2sk(0) 1
α

(
1
sβ

)m/α {
Γ
(m

α

)
+ o(1)

}
,

∫ B

0
2k(r)e2sk(r)rm−1

dr = 2k(0)
CB,s

A(m)
− 2e2sk(0) 1

sα

(
1
sβ

)1+m/α {
Γ
(

1 +
m
α

)
+ o(1)

}
,

and

∂ log CB,s

∂s
=

∫ B
0 2k(r)e2sk(r)rm−1

dr∫ B
0 e2sk(r)rm−1 dr

= 2k(0)− m
sαβ

+ o
(

1
s

)
.

Thus, we have from Equations (14) and (17),

− log Ds = log s + O(1),

for both the lower and upper bounds, and from Equation (13),

h(gs) = −m
α

log s + O(1)

=
m
α

log Ds + O(1).
(20)

Since dinp in Equation (5) is a norm squared for a valid RKHS kernel K, the rate-distortion
dimension of the source distribution p is defined by [13],

dimR(p) = lim
D→0

Rinp(D)

− 1
2 log D

. (21)

From Theorems 2 and 3 and Equation (20), we conclude the following.
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Theorem 4. If the source has a finite differential entropy, positive and finite vp defined in Equation (18), and
a bounded support, that is, there exists a finite B > 0 such that QB = 1 in Equation (11), and the radial
kernel, K(x, y) = k(‖x− y‖) satisfies Equation (19) for α > 0 and β > 0, then the rate-distortion dimension
Equation (21) of Rinp(D) is given by

dimR(p) =
2m
α

. (22)

This theorem shows that the rate-distortion dimension is dependent only on the dimensionality
of the input space and independent of the dimensionality of the feature space. In the case of the
linear kernel, K(x, y) = 〈x, y〉, with φ(x) = x, the distortion measure in Equation (5) reduces to
the usual squared distortion measure, ‖x− y‖2. It can be shown that under norm-based distortion
measures including the squared distortion measure, the rate-distortion dimension of a source with
an m-dimensional density is m [11,12]. From the preceding theorem, this is also the case for a general
radial kernel if the kernel function has the order α = 2 as the Gaussian kernel. Expression (22) of the
rate-distortion dimension will be examined through a numerical experiment in Section 5.1.

4.4. Upper Bound to Rfea(D)

We construct an upper bound to the rate-distortion function Rfea(D). We choose the conditional
distribution of the reconstruction by

q(α|x) = N(α; mK(x), K̃−1/2s), (23)

where K̃ = K + cI,
mK(x) = K̃−1k(x),

and N(·; m, Σ) denotes the n-dimensional normal density with mean m and covariance matrix Σ. Here,
we have introduced the regularization constant c ≥ 0 with the n× n identity matrix I. The conditional
distribution in Equation (23) is implied by Equation (2) and the approximation qs(α) = N(α; 0, I/(2sc)).
This reconstruction distribution yields the following upper bound:

Rfea(Ds) ≤ Rfea,U(Ds) = h(Mp)− h(N(α; mK(x), K̃−1/2s)), (24)

Ds =
n− ctr{K̃−1}

2s
+ Dmin(c), (25)

where Mp(α) =
∫

N(α; mK(x), K̃−1/2s)p(x)dx,

h(N(α; mK(x), K̃−1/2s)) =
n
2

log
(πe

s
|K̃|1/n

)
, (26)

which is independent of the input x, and

Dmin(c) = E[K(X, X)]− tr{K̃−1E[k(X)k(X)T ]} − ctr{K̃−1E[k(X)k(X)T ]K̃−1}.

If c = 0, Dmin is the mean of the variance of the prediction by the associated Gaussian process [14].
Further upper-bounding the differential entropy h(Mp) by the Gaussian entropy, we have the

following theorem.

Theorem 5. The rate distortion function Rfea(D) is upper-bounded as

Rfea(D) ≤ Rfea,G(D) =
1
2

log

∣∣∣∣∣I + n− ctr{K̃−1}
D− Dmin(c)

K̃−1C

∣∣∣∣∣ , (27)
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where
C = E[k(X)k(X)T ]− E[k(X)]E[k(X)]T . (28)

The proof is put in Appendix B. In the simplest case where φ(x) = x ∈ R1, n = 1, and the source
is the Gaussian, p(x) = N(x; 0, σ2), the upper bound in Equation (27) reduces to

Rfea,G(D) =
1
2

log
(

1 +
σ2

D

)
,

which is an asymptotically (as D → 0) tight upper bound of the well-known rate distortion function
for the Gaussian source under the squared distortion measure, R(D) = 1

2 log
(

σ2

D

)
[3,7].

5. Experimental Evaluation

We numerically evaluate the rate-distortion bounds obtained in the previous section. Designing a
quantizer by the kernel K-means algorithm, we compare its performance with the bounds.

We focus on the case of the Gaussian kernel,

K(x, y) = e−γ‖x−y‖2
(29)

with the kernel parameter γ > 0.

5.1. Synthetic Data

As a source, we first assumed the uniform distribution on the union of the two regions,
C1 = {x ∈ Rm; A(m)‖x‖m ≤ m/2} and C2 = {x ∈ Rm; m2 ≤ A(m)‖x‖m ≤ m(m + 1/2)}, where C1

and C2 have equal volumes and C1 ∪ C2 has volume 1. This suggests that B =
{

m(m+1/2)
A(m)

}1/m
and

QB = 1 in Equation (10) and succeeding equations in Sections 4.1 and 4.2.
We used the trapezoidal rule to compute the one-dimensional integrations in the lower bound

Rinp,L and the upper bound Rinp,G. We generated i.i.d sample of the size n = 200 from the source to
compute k(x) and K for Rfea,G in Equation (27). Generating another 4000 data points, we approximated
the required expectations. We optimized the regularization coefficient c to minimize the upper bound
Rfea,G for each D.

Using the same data set of the size 4000 as a training data set, we run the kernel K-means algorithm
10 times with random initializations to obtain the minimum distortion for each rate. Varying the
number K of quantized points from 21 to 210, for each K, we counted the effective number Keff of
quantized points which have at least one assigned data point and computed the rate by log2 Keff as
the quantizer is first order, that is, the block length is one. The kernel parameter γ was chosen so that
the clear separation of C1 and C2 is obtained when K = 2.

After the training, we computed the distortion and rate for the test data set, by assigning each of
20,000 test data generated from the same source to the nearest quantized points in the feature space.

For each quantized point, we obtained its preimage. That is, if the kth quantized point is expressed
as ∑n

i=1 αkiφ(xi), its preimage is

yk = argmin
y

∥∥∥∥∥φ(y)−
n

∑
i=1

αkiφ(xi)

∥∥∥∥∥
2

= argmax
y

n

∑
i=1

αkiK(y, xi).

We used the mean shift procedure for the maximization, although this procedure only guarantees
the convergence to a local maximum [15,16].



Entropy 2017, 19, 336 9 of 13

The obtained bounds and the quantizer performances are displayed in Figure 1a,b and for m = 2
and m = 10, respectively, in the forms of distortion-rate functions. The values of Dmax in Equations (7)
and (9) are also indicated in the figures.

In both dimensions, the upper bound Dfea,G is smaller than Dinp,G at low rates while the bound is
above the quantizer performance. However, the value of Dmax,fea suggests that the bound is informative
at low rates. As the rate becomes higher, the lower and upper bounds of the input space reconstruction,
DL,inp and DG,inp, approach each other. In fact, they sandwich the quantizer performance tightly
in the two-dimensional case, which suggests that the rate-distortion function for the feature space
reconstruction, Rfea(D) is close to the rate-distortion function of the input space reconstruction Rinp(D)

at high rates.
We see that the quantizer performances for dfea and those for dinp approach each other as the

rate R grows. The upper bound Dinp,G reasonably approximates the quantizer performance by the
preimages, and it indicates that, in the two-dimensional case (Figure 1a), the results for R = 2 and
3 bits can be improved by at least about 1 bit.

At low distortion levels, each source output should be reconstructed within a small neighborhood
in the feature space where we can find another point y in the input space whose feature map φ(y)
is sufficiently close to the reconstruction. This suggests that the rate-distortion function of feature
space reconstruction is well approximated by the rate-distortion function of input space reconstruction.
In other words, combining multiple input points to make a reconstruction in feature space does not
do any good for reducing distortion and only a single input point is enough when it is mapped into
feature space. Hence, the rate-distortion bounds of input space reconstruction may be informative at
low distortion levels.

In the 10-dimensional case (Figure 1b), the distortion in the test data set is close to Dinp,G(R) or
above it at high rates. This may be due to overfitting of the kernel K-means to the training data set of
the size, 4000. That is, as the the rate grows, the distortion in the training data set decreases and the
discrepancy between the distortions in the training and test sets increases.

●
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= 0.879
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Figure 1. Rate-distortion bounds and quantizer performances for (a) m = 2 and (b) m = 10 [17].

To examine the asymptotic behavior of Rinp(D) discussed in Section 4.3, we computed Rinp,L(D)

and Rinp,G(D) for small D, that is, for large s. As well as the Gaussian kernel Equation (29), which has
α = 2 in Equation (19), we applied the Laplacian kernel,

K(x, y) = e−γ‖x−y‖,

which corresponds to α = 1. The kernel parameter of the Laplacian kernel was set to the square root of
the value used in the Gaussian kernel.
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The rate-distortion bounds, Rinp,L(D) and Rinp,G(D) divided by −(log D)/2 for small distortion
levels are shown in Figure 2a,b and for m = 2 and m = 10, respectively. We can see that, in each case,
the ratio tends to 2m/α, that is, the rate-distortion dimension evaluated in Equation (22) as D → 0.
For the distortion levels smaller than those presented in Figure 2, the ratios start oscillating due to the
errors of numerical integrations.

2

3

4

5

10−4 10−3

D

2R
(D

)/
−

lo
g(

D
)

Rinp,L(D) : α = 1

Rinp,G(D) : α = 1

Rinp,L(D) : α = 2

Rinp,G(D) : α = 2

10

15

20

25

10−4 10−3 10−2

D

2R
(D

)/
−

lo
g(

D
)

(a) (b)

Figure 2. The ratios between the rate-distortion bounds and −(log D)/2 for (a) m = 2 and (b) m = 10.
The bounds are for the Laplacian kernel (α = 1) and the Gaussian kernel (α = 2).

5.2. Image Data

We carried out a similar evaluation of the rate-distortion bounds and quantizer performances for
a grayscale image data set extracted from the COIL20 data set [18]. We used the first category from
20 categories of images, which consisted of 72 images of size 32× 32. Dividing each 32× 32 image
into small patches of size 2× 2 (m = 4), we obtained 256 data from each image, and 18,432 data in
total. Removing duplicate data points, we finally obtained 13,368 data. We used first 2048 data as the
training data and the remaining 11,320 data as the test data. The training data set was also used for
approximating expectations of kernel functions required to compute Rfea(D), and the first n = 256
data points were used as the sample data in the definition of dfea. We evaluated only the upper bounds,
Rfea,G and Rinp,G, since the lower bound Rinp,L requires estimating the source entropy from empirical
data, which depends heavily on the estimation method, and hence is to be addressed more in detail.

Each dimension was normalized so that it has mean 0 and variance 1. Hence, vp in Rinp,G was
approximated by the empirical variance, 1. The boundary B in Rinp,G was approximated by the
maximum norm of the training data points.

The upper bounds and quantizer performances are presented in Figure 3. Although the upper
bounds are loose and above the respective quantizer performances, the upper bound Dinp,G(R) is roughly
predictive of the quantizer performance in the input space, and so does min{Dinp,G(R), Dfea,G(R)} for
the reconstruction in the feature space.
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Figure 3. Upper bounds of the rate-distortion functions and quantizer performance for image data.

6. Conclusions

In this paper, we have shown upper and lower bounds for the rate-distortion functions associated
with kernel feature mapping. As suggested in Section 5, the upper bound for the reconstruction
in feature space is informative at high distortion levels while the bounds for the reconstruction in
input space are informative at low distortion levels. We have also evaluated the rate-distortion
dimension of sources with bounded support under kernel-based distortion measures, which shows
the asymptotic behavior of the rate-distortion function. Our future directions include deriving tighter
bounds and exact evaluation of the rate-distortion function in some special cases. In particular, it is an
important undertaking to derive a lower bound to the rate-distortion function of the reconstruction in
feature space.
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Appendix A. Proof of Theorem 1

Proof. Let q∗(y|x) be the conditional density for x ∈ X that achieves the infimum of Rinp(D). Then,
for Y ∼

∫
q∗(y|x)p(x)dx, it holds that I(X; Y) = Rinp(D) and

E
[
‖φ(X)− φ(Y)‖2

]
≤ D. (A1)

Since the input space X is bounded and separable, and the kernel function K is continuous, for
any ε > 0 and y ∈ X , there exist coefficients {αi(y)} such that∥∥∥∥∥φ(y)−

n

∑
i=1

αi(y)φ(xi)

∥∥∥∥∥ ≤ ε

3
√

D
(A2)

holds when n is sufficiently large.
Let α(y) = (α1(y), . . . , αn(y))T and

q∗(α|x) =
∫

δ(α− α(y))q∗(y|x)dy,

where δ is Dirac’s delta function. Then, for A ∼
∫

q∗(α|x)p(x)dx, it follows from the triangle
inequality that
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E [dfea(X, A)] = E
[
‖φ(X)−∑n

i=1 αi(Y)φ(xi)‖2
]

≤ E
[
‖φ(X)− φ(Y)‖2

]
+ 2E [‖φ(X)− φ(Y)‖ ‖φ(Y)−∑n

i=1 αi(Y)φ(xi)‖]

+E
[
‖φ(Y)−∑n

i=1 αi(Y)φ(xi)‖2
]

,

and hence

E [dfea(X, A)] ≤ D +
2ε

3
+

ε2

9D
(A3)

≤ D + ε. (A4)

To obtain Inequality (A3), we used Equations (A1) and (A2), and Jensen’s inequality,

E
[√
‖φ(X)− φ(Y)‖2

]
≤

√
E
[
‖φ(X)− φ(Y)‖2

]
≤
√

D.

Thus, from Equation (A4) and the data-processing inequality [7], we have

Rfea(D + ε) ≤ I(X; A) ≤ I(X; Y) = Rinp(D),

which completes the proof.

Appendix B. Proof of Theorem 5

Proof. The mean and covariance matrix of the random vector A ∼ Mp(α) are

E[A] = K̃−1
∫

k(x)p(x)dx

Cov[A] = E
[

AAT
]
− E [A] E [A]T

=

{
1
2s

I + K̃−1
∫

k(x)k(x)T p(x)dx
}

K̃−1 − K̃−1
∫

k(x)p(x)dx
∫

k(x)T p(x)dxK̃−1

=

{
1
2s

I + K̃−1C
}

K̃−1,

where C is defined by Equation (28).
Thus, the maximum entropy principle of the Gaussian distribution implies that the differential

entropy h(Mp) is upper-bounded by

h(Mp) ≤
n
2

log

[
(2πe)

∣∣∣∣{ 1
2s

I + K̃−1C
}

K̃−1
∣∣∣∣ 1

n
]

.

Combining this inequality with Equations (24) and (26), we have

Rfea(Ds) ≤
1
2

log
∣∣∣I + 2sK̃−1C

∣∣∣ .

Solving Equation (25) with respect to 2s and substituting it into the above expression, we obtain
the upper bound in Equation (27).
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